Water deuterium fractionation in the warm inner regions of solar-type protostars

Audrey COUTENS

Niels Bohr Institute, Center for Star and Planet Formation, University of Copenhagen

J. K. Jørgensen, M. V. Persson, E. F. van Dishoeck, C. Vastel, V. Taquet, S. Bottinelli, E. Caux, D. Harsono, J. M. Lykke

Introduction

• Water omnipresent in the interstellar medium (hot cores, low-mass protostars, shocks, prestellar cores, protoplanetary disks, ...)

- Important species :
 - in the process of star formation through the cooling of warm gas
 - chemistry of O-bearing species both in the gas phase and on the grain surfaces
 - crucial ingredient for the emergence of Life

• Delivery of water on Earth by comets and/or asteroids through impacts

Fig. 3. D/H ratios in different objects of the solar system. Data are

Water chemistry in the interstellar medium

Water deuterium fractionation

High

water

D/H

ratios

High water D/H ratios

Water deuterium fractionation

Low water D/H ratios

Origin of water in Solar System objects

Where does the water contained in comets and asteroids come from?
How and when did this water form?

Use of water deuterium fractionation (HDO/H₂O, D₂O/HDO, D₂O/H₂O)

Formation in the protoplanetary disk (ion-molecule reactions) ?

Earlier formation in the molecular cloud or in the protostellar envelope?

1. Theoretical models

2. Observations

Origin of water in Solar System objects

Theoretical study: Cleeves et al. 2014

- Aim: Identifying the source of Earth's (and other solar system objects) water
- Test with a chemical network if it is possible to reach the terrestrial HDO/H₂O ratio in a disk using an initial $(D/H)_{H2} = 2 \times 10^{-5}$ (solar nebula value)
- Results: The ion-driven deuterium pathways are inefficient in the disk.
 A part of interstellar ice survived the formation of solar system and was incorporated into planetesimal bodies.

"If the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems."

Water in the inner regions of solar-type protostars

Jørgensen & van Dishoeck (2010)

First spatially and spectrally resolved image of water vapor around a **Class 0 protostar** (NGC 1333 IRAS 4B) through millimeter wavelength observations of the **H**₂¹⁸**O isotopologue** with the PdBI (Jørgensen & van Dishoeck 2010)

Compact emission consistent with thermal desorption in the hot corino (T > 100 K)

HDO in the inner regions of solar-type protostars

• HDO detected in the warm inner regions of Class 0 protostars (Codella et al. 2010, Persson et al. 2013, 2014, Taquet et al. 2013, Coutens et al. 2014) with interferometers

- Compact emission as seen for H₂¹⁸O
- Assuming $H_2^{16}O/H_2^{18}O \sim 500$ (Solar System value)
- LTE modeling used to derive the HDO/H₂O ratio

The HDO/H₂O ratios in the inner regions of solar-type protostars

Persson et al. (2014)

The HDO/H₂O ratios in the inner regions of solar-type protostars

Detection of D₂O in the inner region of a solar-type protostar

- First interferometric detection of D₂O towards the Class 0 protostar NGC1333
 IRAS2A with the PdBI (Coutens et al. 2014)
- LTE modeling (HDO, D₂O, H₂¹⁸O)
- $D_2O/HDO \sim 1.2 \times 10^{-2}$
- HDO/H₂O ~ 1.7×10^{-3}

Coutens et al. (2014, ApJL)

High D₂O/HDO ratio in the inner region of a solar-type protostar

 $D_2O/HDO \sim 7 \times HDO/H_2O$

- Statistically we would expect D₂O/HDO ~ 1/4 × HDO/H₂O
- Surface grain chemical models also predict $D_2O/HDO \leq HDO/H_2O$

Two scenarios :

- Missing ingredient in the understanding of the surface deuteration process ?
- Thermal desorption + important production of H₂O at high temperature ?
 - ✓ Thermal desorption of the grain mantles : high D₂O/HDO ratio
 - ✓ Water formed in the gas phase at high temperature (> 230 K) : decrease of the HDO/H₂O ratio

ALMA observations of IRAS 16293

ALMA observations of IRAS 16293

Deuterated water in the cold envelope of protostars

• Fundamental HDO lines at 894 GHz and 465 GHz detected with *Herschel*/HIFI and JCMT show deep absorption.

• 3 fundamental D₂O lines detected in absorption towards IRAS16293 with Herschel/HIFI (Vastel et al. 2010, Coutens et al. 2013) and the JCMT (Butner et al. 2007)

Probe of the cold regions

Deuterated water in the cold envelope of protostars

• Spherical non-LTE modeling of the HDO lines show that a very rich water layer surrounds the protostars (Coutens et al. 2012, 2013)

• Probably formed by photodesorption by the (external/cosmic ray induced) UV field

• High HDO/H₂O ratio ~ 5% and D₂O/HDO ~ 11% for the outermost regions of the protostar IRAS 16293

Decreasing water D/H ratio towards the inner regions

Decrease of the water D/H ratios from the cold outer regions to the warm inner regions

Possible explanations:

- additional formation of water in the gas phase at high temperature
- partially thermally reprocessed
- gradient of water D/H ratios in the grain mantles (Taquet et al. 2014)

Conclusion

• Water deuteration helpful to follow the evolution of water during the star formation process and to constrain the water formation mechanisms

- Interferometric detection of D₂O towards NGC1333 IRAS2A
 - \Rightarrow D₂O/HDO > HDO/H₂O
 - Thermal desorption of grain mantles + extra production of H₂O in the gas phase at high temperature ?
- Similar results for IRAS16293 (ALMA preliminary results)
- Decrease of the water deuterium fractionation from the cold outer regions to the warm inner regions
- Inner HDO/H₂O ratios consistent in some cases with cometary values

Future

• Measurements of the HDO/H₂O ratios at different stages would help us to follow the evolution of water.

• Water is supposed to be on the grains in the disk mid-plane: it could be challenging to detect the deuterated water form.