

WG4: Isotopic Chemistry

A view from the astronomer

Charlotte Vastel

TOULOUSE I

Our Astro-Chemical History

The main objective of the Action is to bring together astrophysical and chemical laboratories to focus on the molecular evolution towards complexity, from star formation to the present day Solar System, and to provide innovative experimental and theoretical chemical schemes.

Golden age for astrochemistry

Golden age for astrochemistry

SOLIS: 1st Large Program with NOEMA (1) Understand organic chemistry in space

(2) Determine how it evolves during the process of formation of Solar-type systems

(see B. Lefloch's presentation)

The astronomers periodic table

Mg

fe

How abundant is one element presented by the size of its white square.

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms
H ₂	C3*	c-C ₀ H	C5*	C ₅ H	C ₀ H	CH ₃ C ₃ N	CH3C4H	CH ₃ C ₅ N	HC ₉ N	c-C ₆ H ₆ *	HCHN
AIF	C ₂ H	I-C ₃ H	C ₄ H	AH2C4	CH ₂ CHCN	HC(O)OCH ₃	CH3CH2CN	(CH3)2CO	CH ₃ C ₆ H	n-C ₃ H ₇ CN	C ₆₀ *
AICI	C20	C ₃ N	C ₄ Si	C2H4*	CH3C2H	сн _а соон	(CH ₃) ₂ O	(CH ₂ OH) ₂	C2H5OCHO	HC3H7CN 2014	C70*
C2**	C ₂ S	C30	1-C3H2	CH ₃ CN	HC ₅ N	C7H	CH3CH2OH	CH3CH2CHO	CH3OC(0)CH3		
СН	CH ₂	C ₃ S	o-C ₃ H ₂	CH ₃ NC	CH3CHO	C ₆ H ₂	HC ₇ N				
CH*	HCN	C ₂ H ₂ *	H ₂ CCN	CH3OH	CH ₃ NH ₂	CH2OHCHO	CeH				
CN	HCO	NH ₃	CH4*	CH ₃ SH	o-C2H4O	/HCeH*	CH ₃ C(O)NH ₂				
co	HCO*	HCCN	HC ₃ N	HC ₃ NH*	H ₂ CCHOH	CH2CHCHO (?)	C ₈ H ⁻				
CO*	HCS*	HCNH*	HC ₂ NC	HC ₂ CHO	CeH-	CH ₂ CCHCN	C ₃ H ₆				
CP	HOC+	HNCO	нсоон	NH ₂ CHO		H ₂ NCH ₂ CN	CH3CH2SH (?)				
SIC	H ₂ O	HNCS	H ₂ CNH	C ₅ N		CH3CHNH					
HCI	H ₂ S	HOCO*	H ₂ C ₂ O	HC4H*							
KCI	HNC	H ₂ CO	H ₂ NCN	/-HC ₄ N							
NH	HNO	H ₂ CN	HNC ₃	c-H ₂ C ₃ O							
NO	MgCN	H ₂ CS	SIH4*	H2CCNH (?)							
NS	MgNC	H ₃ O*	H ₂ COH*	C ₅ N							
NaCl	N ₂ H*	c-SiC ₃	C4H ⁻	HNCHCN							
он	N ₂ O	CH3*	HC(O)CN								
PN	NaCN	C ₃ N	HNCNH								
so	OCS	PH ₃	CH3O								
SO*	SO ₂	HCNO	NH4*								
SiN	c-SiC ₂	HOCN	H ₂ NCO* (?)								
SIO	CO2*	HSCN									
SiS	NH ₂	H ₂ O ₂									
CS	H3. (•)	C ₃ H*									
HF	SICN	HMgNC									
HD	AINC										
FeO?	SINC										
02	HCP										
CF*	CCP										
BO 80	NOH H-O*										
	H.O.										
0.01	KCN										
CN-	EeCN										
SH+	HO										
SH	TIO ₂										
	C ₂ N										
HCI*	2014										
TiO											
ArH*											
NO* ?											

Molecules in the Interstellar Medium or Circumstellar Shells (as of 10/2014: CDMS catalog)

More than 180 molecules unambiguously detected

Isotopologues (H, C, N, O, S) are not listed

Our working group

WG1: Chemistry in cold diluted gas
WG2 icy grain surface chemistry
WG3 UV and X-ray photochemistry
WG4: Isotopic Chemistry (Octavio Roncero and myself as coordinators)

The core of this Action relies on data coming from ground and space telescopes. For most large observational programs, the data are private to the consortium for a limited amount of time, less than two years usually. Having an established network of laboratories capable of using the data and exploiting it fully keeps the scientific content within the European laboratories.

The next generation of instruments and experiments are the IR James Webb Space Telescope, the ALMA and NOEMA interferometer. In order to fully understand their flow of data and making effective consortia that affirm strongly the European presence, a fully established network of laboratory is a necessity.

Our working group

Participants	email	Institute	Prague
Thanja Lamberts	lamberts@strw.leidenuniv.n	Leiden Observatory	contributed
Emanuele Congiu	econgiu@u-cergy.fr	LERMA, France	contributed
Luca Bizzocchi	bizzocchi@mpe.mpg.de	Max Planck Insitute für Extraterrestrische Physik	contributed
Olli Sipilä	osipila@mpe.mpg.de	Max Planck Insitute für Extraterrestrische Physik	Present
Audrey Coutens	acoutens@nbi.ku.dk	Niels Bohr Institute, StarPlan, University of Copenhagen	contributed
Isabel Tanarro	i.tanarro@csic.es	Inst. de Estructura de la Materia, CSIC	Poster
Alexandre Faure	afaure@obs.ujf-grenoble.fr	Observatory of Grenoble, France	
Evelyne Roueff	evelyne.roueff@obspm.fr	LERMA, France	invited
Charlotte Vastel	cvastel@irap.omp.eu	IRAP, France	MC
Octavio Roncero	octavio.roncero@csic.es	CSIC, Spain	MC
Niyazi Bulut	bulut_niyazi@yahoo.com	University of Firat, Turkey	Poster
Cecilia Ceccarelli	cecilia.ceccarelli@obs.ujf-grenoble.f	r IPAG, France	
Dario De Fazio	defazio.dario@yahoo.it	Arcetri, Italy	
Francesco Fontani	fontani@arcetri.astro.it	Arcetri, Italy	
Claudio Codella	codella@arcetri.astro.it	Arcetri, Italy	
Jean-Christophe Loison	jc.loison@ism.u-bordeaux1.fr	ISM, CNRS Bordeaux, France	
François Dulieu	francois.dulieu@u-cergy.fr	Univ Cergy-Pontoise, France	
Tomas Gonzalez Lezana	t.gonzalez.lezana@csic.es	CSIC, Spain	
Fabien Dumouchel	fabien.dumouchel@univ-lehavre.fr	Université du Havre, France	
François Lique	francois.lique@univ-lehavre.fr	Université du Havre, France	Present
Alberto García Vela	garciavela@iff.csic.es	CSIC, Spain	
Miguel Carvajal Zaera	miguel.carvajal@dfa.uhu.es	Spain	
Majdi Hochlaf	Majdi.Hochlaf@u-pem.fr	University Paris-Est Marne-La-Vallée, France	
Maria Luisa Senent Diez	ml.senent@csic.es	CSIC, Spain	
Matt Redman	matt.redman@nuigalway.ie	National University of Ireland Galway	Poster
Kevin Hickson	km.hickson@ism.u-bordeaux1.fr	ISM, CNRS Bordeaux, France	
Paola Caselli	caselli@mpe.mpg.de	Max Planck Insitute für Extraterrestrische Physik	
Bertrand Lefloch	bertrand.lefloch@obs.ujf-grenoble.f	fr IPAG, France	Present
Emmanuel Caux	emmanuel.caux@irap.omp.eu	IRAP, France	
Christian Alcaraz	christian.alcaraz@u-psud.fr	LCP, Orsay	
Claire Romanzin	claire.romanzin@u-psud.fr	LCP, Orsay	
Allan Lopes	allan.lopes@u-psud.fr	LCP, Orsay	
Carla Maria Coppola	cpcr01ch@gmail.com	Università degli Studi di Bari - INAF Arcetri	Poster
Henda Chaabouni	henda.chaabouni@u-cergy.fr	Univ Cergy-Pontoise, France	Poster
Liton Majumdar	Liton.Majumdar@obs.u-bordeaux1.	fi Bordeaux observatory, FR	
Laurent MARGULES	laurent.margules@univ-lille1.fr	Université de Lille, FR	

L. Bizzocchi (Munich, DE), P. Caselli (Munich, DE), E. Caux (IRAP, FR), C. Ceccarelli (IPAG, FR), A. Coutens (DK), C. Codella (IT), F. Fontani (IT), B. Lefloch (IPAG, FR), M. Redman (University of Ireland Galway), O. Sipila (Munich, DE), C. Vastel (IRAP, FR)

- E. Congiu, F. Dulieu, H. Chaabouni (Cergy, FR)
- T. Lamberts (Leiden, NL)
- C. Alcaraz, C. Romanzin, A. Lopes (LPC, FR)
- I. Tanarro (CSIC, SP)
- J.-C. Loison, K. Hickson (ISM, FR)
- L. Margules (Lille, FR)

- M. Hochlaf (FR)
- F. Lique, F. Dumouchel (Le Havre, FR)
- O. Roncero, T. González-Lezana, A. García-Vela,
- M. Carvajal Zaera, M.L. Senent Diez (CSIC, SP)
- D. de Fazio (IT)
- L. Wiesenfeld, A. Faure (IPAG, FR)
- N. Bulut (Firat University, Turkey)
- Liton Majumdar (Bordeaux, FR)

Isotopologues chemistry (H, C, N, O, S)

my biaised view on D-chemistry

D: the fossil atom

Deuterium was formed during the Big Bang nucleosynthesis (along with H, He, Li and Be).

Formed during BBN, D is a fragile isotope, easily destroyed at high temperatures. The expansion of the universe cooled the universe and cut this conversion (-->⁴He) short before it could be completed.

High temperatures inside stars lead to a constant destruction of D, transformed in heavier elements. This decreasing abundance in time is called **astration**.

The remaining D is therefore representative of the Universe rate of expansion and its density.

The fossil atom

Deuterium was formed during the primeval Big Bang nucleosynthesis with D/H proportional to baryon density.

QSOs: D/H close to the primeval value

VLT: D/H=2.82 10⁻⁵@z=2.6

WMAP (2009): D/H = 2.7 10⁻⁵

A precise estimate of the baryon density removes a degree of liberty to the cosmological models.

Kirkman et al. 2003/ Burles et al. 2001

The fossil atom

Deuterium was formed during the primeval Big Bang nucleosynthesis with D/H proportional to baryon density.

Deuterated molecules in the interstellar medium

	D		D2	D ₃	
HD HDO HDS H2D+ DCN DNC DNC CH2DCCH	C_2D DCO^+ N_2D^+ NH_2D HDCS DC_5N C_2D c-C3HD	$CH_{3}CCD$ $HDCS$ $CH_{3}OD$ $C_{4}D$ $CH_{2}DOH$ $CH_{2}DCN$ $DC_{3}N$ ND	CHD ₂ OH CHD ₂ CCH D ₂ CS NHD ₂ CHD ₂ OH	D_2CO CH_2DCCD D_2O D_2H^+ D_2S $c-C_3D_2$	ND3 CD3OH

Abundances much larger (several orders of magnitudes) wrt the cosmic D/H abundance (1.5 10^{-5} ; Linsky et al. 2007).

Main chemical reactions extracting D from HD (main D reservoir in dense regions):

Exothermic reactions, $\Delta E_1/k\sim 230$ K, $\Delta E_2/k\sim 375$ K, $\Delta E_3/k\sim 550$ K. In the cold regions (10-20K), backwards reactions are not efficient despite the H₂ high abundance.

Isotopic fractionation: water

Comets are among the most primitive bodies left from the planetesimal building stage of the Solar Nebula

These comets may have originated from radii near the gas giants and subsequently ejected to the Oort cloud (>5,000Bu). These comets are believed to originate from the Kuiper belt, which exists beyond the orbits of the giant planets at radii between 30 and 50AU potential source of water on the Earth! Hartogh et al. 2011, Nature

Isotopic fractionation: water

Kuiper belt (30-50 UA)

Asteroids belt (2-5 UA): carbonaceous chondrites

comets (formation in the SS, in the coldest regions, 4.6 billions years ago)

WG4: Isotopic Chemistry

A view from the theoretician

Octavio Roncero

May 28th, 2015